Chemical and Physical Characterization of Produced Waters from Conventional and Unconventional Fossil Fuel Resources

TitleChemical and Physical Characterization of Produced Waters from Conventional and Unconventional Fossil Fuel Resources
Publication TypeJournal Article
Year of Publication2011
AuthorsAlley B, Beebe A, Rodgers, Jr. J, Castle JW
Pagination74 - 82
Date Published2011/09//
ISBN Number0045-6535
Call Number215
KeywordsEnergy, Environment, Industry, Water

Characterization of produced waters (PWs) is an initial step for determining potential beneficial uses such as irrigation and surface water discharge at some sites. A meta-analysis of characteristics of five PW sources [i.e. shale gas (SGPWs), conventional natural gas (NGPWs), conventional oil (OPWs), coal-bed methane (CBMPWs), tight gas sands (TGSPWs)] was conducted from peer-reviewed literature, government or industry documents, book chapters, internet sources, analytical records from industry, and analyses of PW samples. This meta-analysis assembled a large dataset to extract information of interest such as differences and similarities in constituent and constituent concentrations across these sources of PWs. The PW data analyzed were comprised of 377 coal-bed methane, 165 oilfield, 137 tight gas sand, 4000 natural gas, and 541 shale gas records. Majority of SGPWs, NGPWs, OPWs, and TGSPWs contain chloride concentrations ranging from saline (>30 000 mg L−1) to hypersaline (>40 000 mg L−1), while most CBMPWs were fresh (<5000 mg L−1). For inorganic constituents, most SGPW and NGPW iron concentrations exceeded the numeric criterion for irrigation and surface water discharge, while OPW and CBMPW iron concentrations were less than the criterion. Approximately one-fourth of the PW samples in this database are fresh and likely need minimal treatment for metal and metalloid constituents prior to use, while some PWs are brackish (5000–30 000 mg Cl− L−1) to saline containing metals and metalloids that may require considerable treatment. Other PWs are hypersaline and produce a considerable waste stream from reverse osmosis; remediation of these waters may not be feasible. After renovation, fresh to saline PWs may be used for irrigation and replenishing surface waters.

Short TitleChemosphere